Mark Scheme (Results) J anuary 2009

GCE

GCE Mathematics (6678/ 01)

J anuary 2009
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1	$\mathrm{F}=$ ma parallel to the slope, $T-1500 g \sin \theta-650=1500 a$ Tractive force, $30000=T \times 15$ $\begin{aligned} & a=\frac{\frac{30000}{15}-1500(9.8)\left(\frac{1}{14}\right)-650}{1500} \\ & 0.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	M1* A1 M1* d*M1 A1 (5)
2 (a)	$\begin{aligned} & \mathrm{R}(\uparrow): R=25 g+75 g(=100 g) \\ & \begin{aligned} F=\mu R & \Rightarrow F=\frac{11}{25} \times 100 g \\ & =44 \mathrm{~g}(=431) \end{aligned} \end{aligned}$	B1 M1 A1
(b)	$\begin{aligned} & \mathrm{M}(A): \\ & 25 g \times 2 \cos \beta+75 g \times 2.8 \cos \beta \\ & =S \times 4 \sin \beta \\ & \mathrm{R}(\leftrightarrow): F=S \\ & 176 g \sin \beta=260 g \cos \beta \\ & \beta=56\left(^{\circ}\right) \end{aligned}$	M1 A2, 1, 0 M1A1 A1
(c)	So that Reece's weight acts directly at the point C.	(6) B1 [10]

Question Number	Scheme	Marks
6 (a) ${ }^{(b)}$	Horizontal distance: $\begin{aligned} 57.6 & =p \times 3 \\ p & =19.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	Use $s=u t+\frac{1}{2} a t^{2}$ for vertical displacement.	M1
	$\begin{aligned} & -0.9=q \times 3-\frac{1}{2} g \times 3^{2} \\ & -0.9=3 q-\frac{9 g}{2}=3 q-44.1 \end{aligned}$	A1
	$q=\frac{43.2}{3}=14.4 \quad * \mathbf{A G}^{*}$	A1 cso
		(3)
	initial speed $\sqrt{p^{2}+14.4^{2}} \quad$ (with their p)	M1
	$=\sqrt{576}=\underline{24}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	Al cao
		(2)
	$\tan \alpha=\frac{14.4}{p}\left(=\frac{3}{4}\right)$ (with their p)	B1
		(1)
	When the ball is 4 m above ground:	
	$3.1=u t+\frac{1}{2} a t^{2} \text { used }$	M1
	$3.1=14.4 t-\frac{1}{2} g t^{2} \text { o.e }\left(4.9 t^{2}-14.4 t+3.1=0\right)$	A1
	$\Rightarrow t=\frac{14.4 \pm \sqrt{(14.4)^{2}-4(4.9)(3.1)}}{2(4.9)} \quad \text { seen or implied }$	M1
	$t=\frac{14.4 \pm \sqrt{146.6}}{9.8}=0.023389 \ldots \text { or } 2.70488 \ldots \quad \text { awrt } 0.23 \text { and } 2.7$	A1
	duration $=2.70488 . . .-0.23389 \ldots$	M1
	$=2.47$ or 2.5 (seconds)	A1
or 6 (e)	M1A1M1 as above $14.4 \pm \sqrt{146.6}$	
	$t=\frac{14.4 \pm \sqrt{146.6}}{9.8}$	A1
	Duration $2 \times \frac{\sqrt{146.6}}{9.8}$ o.e.	M1
	$=2.47$ or 2.5 (seconds)	A1
(f)	Eg. : Variable ' g ', Air resistance, Speed of wind, Swing of ball, The ball is not a particle.	B1
		$\begin{array}{r} (1) \\ {[15]} \\ \hline \end{array}$

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y Time for $P, T_{A B}=\frac{\frac{3 d}{5}-x}{\frac{1}{2} u}$, Time for $Q, T_{W B}=\frac{x}{\frac{1}{4} u} \quad$ from their y Hence $T_{A B}=T_{W B} \Rightarrow \frac{\frac{3 d}{5}-x}{\frac{1}{2} u}=\frac{x}{\frac{1}{4} u}$ gives, $2\left(\frac{3 d}{5}-x\right)=4 x \Rightarrow \frac{3 d}{5}-x=2 x, 3 x=\frac{3 d}{5} \Rightarrow x=\frac{1}{5} d$	B1ft B1ft M1 A1 cao (4)
or (d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y speed $P=x=\frac{1}{2} u$, speed P : new speed $Q=\frac{1}{2} u: \frac{1}{4} u=2: 1$ from their y Distance of B from wall $=\frac{1}{3} \times \frac{3 d}{5} ;=\frac{d}{5}$ their $\frac{1}{2+1}$	B1ft B1ft M1; A1 (4)
$2^{\text {nd }}$ or (d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y Combined speed of P and $Q=\frac{1}{2} u+\frac{1}{4} u=\frac{3}{4} u$ Time from wall to $2^{\text {nd }}$ collision $=\frac{\frac{3 d}{5}}{\frac{3 u}{4}}=\frac{3 d}{5} \times \frac{4}{3 u}=\frac{4 d}{5 u} \quad$ from their y Distance of B from wall $=($ their speed $) x($ their time $)=\frac{u}{4} \times \frac{4 d}{5 u} ;=\frac{1}{5} d$	B1ft B1ft M1; A1 (4) [17]

